Mathematics Methods Unit 3 & 4

Random variables

1.	Rand	idom variables									
	Defir	inition: A variable whose possible values are outcomes of a random phenomenon									
	((a) Discrete random variable									
	Defir	Definition: a variable whose values (countable values) are obtained by counting									
	Exarr •	iple: Numl	per of cats in SI	PCA							
	•	Numl	per of marbles per of staffs in a	in a jar an offic	e.						
					Probabili	ty					
								ĸ			
	(i)	Probab Definit	ility distributio ion: is a list of a ponding probat	on all of th pility.	e possik	ole outc	omes o	f a rand	lom var	iable alc	ong with their
		Probab •	ility distributio Probabilities f Sum (total) of	n prope or each the pre	erties (c n value d obabiliti (x	haracte of <i>X</i> lies les is 1 can be	ristics): in the <i>negati</i>	interval ve but F	of $0 \le P(X = x)$	P(X = c) canned	$x) \le 1$ ot be negative)
		Probab	ility distributio	n (discı	rete ran	dom va	riable) (can be g	given by	<i>'</i> :	
		•	Table form								
			P(X=x)								
		•	Graphical forr	n	l	P(X = x)					
							1 2	3	x		
		•	Function form	1		P(x)	= P(X	f = x)			

Probability of a discrete random variable by choosing with replacement

$$P(X = x) = {}^{n}C_{r}(p)^{r}(1-p)^{n-r}$$

Example:

A bag of chips contains 4 red and 2 blue chips. Three chips are drawn randomly without replacement. Draw a probability distribution for *X*: number of blue chips drawn.

$$P(red) = \frac{4}{6} \quad P(blue) = \frac{2}{6} \\ = \frac{2}{3} \qquad = \frac{1}{3}$$

 $f(x) = {}^{3}C_{x}(\frac{1}{3})^{x}(\frac{2}{3})^{3-x}$ for x = 0, 1, 2, ...

X	0	1	2
P(X = x)	8	4	2
	27	9	9

r	٦		r
L	,	1	

Х	0 (<i>r</i> , <i>r</i> , <i>r</i>)	$1 \\ (r,r,b), (b,r,r)(r,b,r)$	2 (r,b,b),(b,b,r)(b,r,b)
P(X=x)	$\frac{4}{6} \times \frac{4}{6} \times \frac{4}{6} = \frac{8}{27}$	$3(\frac{4}{6} \times \frac{4}{6} \times \frac{2}{6}) = \frac{4}{9}$	$3(\frac{4}{6} \times \frac{2}{6} \times \frac{2}{6}) = \frac{2}{9}$

Probability of a discrete random variable by choosing without replacement

$$P(X = x) = \frac{{{n_1}{C_r}}^{n_2} C_{n-r}}{{{n_1} + {n_2}}C_n}$$

Example:

A bag of marbles contains 4 yellow-green and 3 blue-magenta marbles. Three marbles are drawn randomly without replacement. Draw a probability distribution for X: number of yellow-green marble.

$$P(yellow - green) = \frac{4}{7}$$
 $P(blue - magenta) = \frac{3}{7}$

$$f(x) = \frac{{}^{4}C_{x} {}^{3}C_{3-x}}{{}^{4+3}C_{3}}$$

X	0	1	2	3
P(X = x)	1	12	18	4
	35	35	35	35

(ii)	Interval of values Interval of values which the variable take is considered in discrete random variable.						
	Examples: P(X = 1): the probability that X is equivalent to 1 P(X > 1): the probability that X is more than 1 $P(X \ge 1)$: the probability that X is 1 and above P(X < 1): the probability that X is less than 1 $P(X \le 1)$: the probability that X is 1 and below P(1 < X < 5): the probability that X is between 1 and 5 $P(1 \le X \le 5)$: the probability that X is at least 1 and no more than 5 $P(1 < X \le 5)$: the probability that X is more than 1 and no more than 5 $P(1 \le X < 5)$: the probability that X is at least 1 and less than 5 $P(X \le 5 X \ge 1)$: the probability that there is 5 and below given that there is at least 1						
(iii)	Expected value/ n	nean of X					
	Theoretical metho	E(X)	$=\sum x \times P(X)$	= <i>x</i>)			
	Example: Calculate the expected value of <i>X</i> from the given table below.						
	x 0 1 2 3 P(X = x) $\frac{3}{20}$ $\frac{7}{20}$ $\frac{5}{20}$ $\frac{5}{20}$						
	Expected value, $E(X) = \sum x \times P(X = x)$ $= 0\left(\frac{3}{20}\right) + 1\left(\frac{7}{20}\right) + 2\left(\frac{5}{20}\right) + 3\left(\frac{5}{20}\right)$ $= 0 + \frac{7}{20} + \frac{10}{20} + \frac{15}{20}$ $= 1.6$						
	Experimental method $\bar{x} = \frac{\sum fx}{\sum fx}$						
	Example: Calculate the mean score below.						
	x 0 1 2 Frequency 3 7 5				35		
	$\bar{x} = \frac{\sum fx}{\sum f}$ $= \frac{3(0) + 7(1) + 5(2) + 5(3)}{3 + 7 + 5 + 5}$ $= 1.6$						

Prize		\$	520	\$5	\$1	
Prob	ability	0.	.001	0.01	0.5	
	Let X: Pro x $P(X = x)$	fit for L	inda -19 (1 - 20) 0.001	-4 (1-5) 0.01	$ \begin{array}{c} 0 \\ (1-1) \\ 0.5 \end{array} $	(1 - 0) (1 - 0) (1 - 0)
•	A custome	er playe	ed the game	and paid \$3, find	his expected pro	ofit/loss.
	$\frac{\text{Let } x: \text{Pro}}{x}$		17	2	-2	-
	D(Y -	r)	(20-3)	(5-3)	(1-3)	
•	How mucl games?	n Linda fit for L	charge per g	game if she made	a profit of \$200	from 15
	x		k - 20	k-5	<i>k</i> – 1	
	P(X =	<i>x</i>)	0.001	0.01	0.5	0.4

Derivation of formula: $Var(X) = E(X^{2}) - [E(X)]^{2} *$ $= \frac{(n+1)(2n+1)}{6} - (\frac{1+n}{2})^{2}$ $= \frac{2n^{2} + n + 2n + 1}{6} - (\frac{n^{2} + 2n + 1}{4})$ $= \frac{4n^{2} + 6n + 2 - (3n^{2} + 6n + 3)}{12}$ $= \frac{n^{2} - 1}{12}$ $* E(X^{2}) = \sum x^{2} \times P(X = x)$ $= 1^{2} (\frac{1}{n}) + 2^{2} (\frac{1}{n}) + 3^{2} (\frac{1}{n}) + 4^{2} (\frac{1}{n}) + \dots + n^{2} (\frac{1}{n})$ $= \frac{1}{n} [1^{2} + 2^{2} + 3^{2} + 4^{2}]$ $= \frac{1}{n} [\frac{n(n+1)(2n+1)}{6}]$ $= \frac{(n+1)(2n+1)}{6}$ $[E(X)]^{2} = (\frac{1+n}{2})^{2}$

Example 1:

Suppose that a discrete uniform variable is given by U{1,7}. Find the value of the variance.

$$Var(X) = \frac{n^2 - 1}{\frac{12}{12}} = \frac{(7)^2 - 1}{12} = 4$$

Example 2:

k and h each has a discrete distribution which is uniform for the integers 1,2,3,4, ..., n. Show that $Var(k) + Var(h) = \frac{n^2 - 1}{6}$.

$$Var(k) = Var(h)$$

= $\frac{n^2 - 1}{12}$
$$Var(k) + Var(h) = \frac{n^2 - 1}{12} + \frac{n^2 - 1}{12}$$

= $\frac{2n^2 - 2}{12}$
= $\frac{2(n^2 - 1)}{12}$
= $\frac{n^2 - 1}{6}$ (shown)

Example 2:
The radius of a circle drawn, *R* can be any value between 5.5cm and 7.5cm. State the mean for *R*.

$$E(R) = \frac{a+b}{2}$$

$$= \frac{5.5 + 7.5}{2}$$

$$= 6.5$$
(i) Variance
Formula:

$$Var(X) = \frac{(b-a)^2}{12}$$
Derivation of formula:

$$Var(X) = \int_a^b x^2 \left(\frac{1}{b-a}\right) dx - \left(\frac{a+b}{2}\right)^2$$

$$= \left[\frac{x^3}{3(b-a)}\right]_a^b - \frac{(a+b)^2}{4}$$

$$= \frac{b^3 - a^3}{3(b-a)} - \frac{a^3}{4} - \frac{(a+b)^2}{4}$$

$$= \frac{(b-a)(b^2 + ba + a^2)}{3(b-a)} - \frac{a^2 + 2ab + b^2}{4}$$

$$= \frac{4(b^2 + ba + a^2)}{12} - \frac{3(a^2 + 2ab + b^2)}{12}$$

$$= \frac{a^2 - 2ab + b^2}{12}$$

$$= \frac{(b-a)^2}{12}$$
Example 1:
A continuous random variable *X* is uniformly distributed in the interval $84 \le x \le 90$.
Find $Var(X) = \frac{(b-a)^2}{12}$

$$= \frac{(90 - a)^2}{12}$$

	Example 2:
	The speed of cars on the road, V can be any values in the interval, $30 \le V \le 80$. Find
	the variance of V.
	$(00, 00)^2$
	$Var(X) = \frac{(80-30)^2}{(80-30)^2}$
	12
	= 208.33
(iii)	Cumulative density function
	Formula:
	P(X < x) - x = a
	$P(X \leq x) = \frac{b-a}{b-a}$
	Derivation of formula:
	$\sum_{x \in \mathcal{X}} \left(\begin{array}{c} x \\ 1 \end{array} \right)$
	$P(X \le x) = \int \left(\frac{1}{h-a}\right) dx$
	J_a (5 ω)
	$=\left[\frac{x}{x}\right]^{x}$
	$b^{-1}b^{-}a^{1}a^{-}$
	x a
	$=\frac{1}{b-a}-\frac{1}{b-a}$
	$\gamma - q$
	$=\frac{x-u}{1-\frac{1}{2}}$
	b-a

END